NeuroBiography: A database of cognitive neuroscientists' lives & work
User: Guest
Quicksearch:
Articles from NeuroImage, 154
14 articles found...
1. Bright MG, Murphy K (2017) Cleaning up the fmri time series: mitigating noise with advanced acquisition and correction strategies. NeuroImage, 154:1-3
    [NBArticle #48838]
2. Vu AT, Jamison K, Glasser MF, Smith SM, Coalson TS, Moeller S, Auerbach EJ, U─čurbil K, Yacoub E (2017) Tradeoffs in pushing the spatial resolution of fmri for the 7t human connectome project. NeuroImage, 154:23-32
    [NBArticle #48839]
3. Zaitsev M, Akin B, LeVan P, Knowles BR (2017) Prospective motion correction in functional mri. NeuroImage, 154:33-42
    [NBArticle #48840]
4. Bulte D, Wartolowska K (2017) Monitoring cardiac and respiratory physiology during fmri. NeuroImage, 154:81-91
    [NBArticle #48841]
5. Bollmann S, Kasper L, Vannesjo SJ, Diaconescu AO, Dietrich BE, Gross S, Stephan KE, Pruessmann KP (2017) Analysis and correction of field fluctuations in fmri data using field monitoring. NeuroImage, 154:92-105
    [NBArticle #48842]
6. Gross S, Vionnet L, Kasper L, Dietrich BE, Pruessmann KP (2017) Physiology recording with magnetic field probes for fmri denoising. NeuroImage, 154:106-114
    [NBArticle #48843]
7. Caballero-Gaudes C, Reynolds RC (2017) Methods for cleaning the bold fmri signal. NeuroImage, 154:128-149
    [NBArticle #48844]
8. Power JD (2017) A simple but useful way to assess fmri scan qualities. NeuroImage, 154:150-158
    [NBArticle #48845]
9. Bright MG, Tench CR, Murphy K (2017) Potential pitfalls when denoising resting state fmri data using nuisance regression. NeuroImage, 154:159-168
    [NBArticle #48846]
10. Murphy K, Fox MD (2017) Towards a consensus regarding global signal regression for resting state functional connectivity mri. NeuroImage, 154:169-173
    [NBArticle #48847]
11. Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K, Shinohara RT, Elliott MA, Eickhoff SB, Davatzikos C, Gur RC, Gur RE, Bassett DS, Satterthwaite TD (2017) Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. NeuroImage, 154:174-187
    [NBArticle #48848]
12. Griffanti L, Douaud G, Bijsterbosch JD, Evangelisti S, Alfaro-Almagro F, Glasser MF, Duff EP, Fitzgibbon SP, Westphal R, Carone D, Beckmann CF, Smith SM (2017) Hand classification of fmri ica noise components. NeuroImage, 154:188-205
    [NBArticle #48849]
13. Churchill N, Raamana PR, Spring R, Strother SC (2017) Optimizing fmri preprocessing pipelines for block-design tasks as a function of age. NeuroImage, 154:240-254
    [NBArticle #48850]
14. Keilholz SD, Pan W, Billings J, Nezafati M, Shakil S (2017) Noise and non-neuronal contributions to the bold signal: applications to and insights from animal studies. NeuroImage, 154:267-281
    [NBArticle #48851]