viewArticle #48912
NeuroBiography: A database of cognitive neuroscientists' lives & work
User: Guest
Quicksearch:
Singla S, Dempsey C, Warren R, Enikolopov AG, Sawtell NB (2017) A cerebellum-like circuit in the auditory system cancels responses to self-generated sounds. Nature Neuroscience, 20(7):943-950    
Actions:
Preview
The authors provide evidence that a cerebellum-like structure at the initial stage of mammalian auditory processing (the dorsal cochlear nucleus) functions to cancel out self-generated sounds. A similar function has been established for cerebellum-like structures in electroreceptive fish, suggesting a conserved function for these structures across vertebrates
Abstract
The dorsal cochlear nucleus (DCN) integrates auditory nerve input with a diverse array of sensory and motor signals processed in circuitry similar to that of the cerebellum. Yet how the DCN contributes to early auditory processing has been a longstanding puzzle. Using electrophysiological recordings in mice during licking behavior, we show that DCN neurons are largely unaffected by self-generated sounds while remaining sensitive to external acoustic stimuli. Recordings in deafened mice, together with neural activity manipulations, indicate that self-generated sounds are cancelled by non-auditory signals conveyed by mossy fibers. In addition, DCN neurons exhibit gradual reductions in their responses to acoustic stimuli that are temporally correlated with licking. Together, these findings suggest that DCN may act as an adaptive filter for cancelling self-generated sounds. Adaptive filtering has been established previously for cerebellum-like sensory structures in fish, suggesting a conserved function for such structures across vertebrates