NeuroBiography: A database of cognitive neuroscientists' lives & work
User: Guest
Quicksearch:
Runnalls KD, Anson G, Byblow WD (2017) Posture interacts with arm weight support to modulate corticomotor excitability to the upper limb. Experimental Brain Research, 235(1):97-107    
Actions:
Abstract
The use of arm weight support (WS) to optimize movement quality may be an avenue for improved upper limb stroke rehabilitation; however, the underlying neurophysiological effects of WS are not well understood. Rehabilitation exercises may be performed when sitting or standing, but the interaction of posture with WS has not been examined until now. We explored the effect of posture with WS on corticomotor excitability (CME) in healthy adults. Thirteen participants performed static shoulder abduction in two postures (sitting and standing) at three levels of WS (0, 45, and 90 % of full support). Transcranial magnetic stimulation of primary motor cortex was used to elicit motor-evoked potentials (MEPs) in eight upper limb muscles. Stimulus–response (SR) curves were fitted to the MEP data using nonlinear regression. Whole-body posture interacted with WS to influence tonic activity and CME in all muscles examined. SR curve parameters revealed greater CME when standing compared to sitting for upper arm muscles, but lower CME to the shoulder, forearm, and hand. Distal to the shoulder, tonic activity and CME were modulated independent of any explicit differences in task requirements. Overall, these results support a model of integrated upper limb control influenced by whole-body posture and WS. These findings have implications for the application of WS in settings such as upper limb rehabilitation after stroke