citesArticle #34083: Cites...
NeuroBiography: A database of cognitive neuroscientists' lives & work
User: Guest
Holmes NP, Dakwar A (2015) Online control of reaching and pointing to visual, auditory, and multimodal targets: Effects of target modality and method of determining correction latency. Vision Research, 117:105-116        
35 Papers found...

View these results as a formatted reference list in journal styles: APA - ExpBrainRes - JNeuroPhys - NB

Sort by Year, then Author; Author then Year

1. Aivar MP, Brenner E, Smeets JBJ (2008) Avoiding moving obstacles. Experimental Brain Research, 190(3):251-264
    [NBArticle #23610] [Cites 43] [CitedBy 1]
2. Alstermark B, Eide E, Górska T, Lundberg A, Pettersson L' (1984) Visually guided switching of forelimb target reaching in cats. Acta Physiologica Scandinavica, 120(1):151-153
      [NBArticle #31126] [Cites 2] [CitedBy 23]
3. Archambault PS, Ferrari-Toniolo S, Caminiti R, Battaglia-Mayer A (2015) Visually-guided correction of hand reaching movements: the neurophysiological bases in the cerebral cortex. Vision Research, 110:244-256
  [NBArticle #41023] [CitedBy 1]
4. Baugh LA, Hoe E, Flanagan JR (2012) Hand-held tools with complex kinematics are efficiently incorporated into movement planning and online control. Journal of Neurophysiology, 108(7):1954-1964
    [NBArticle #34786] [Cites 2] [CitedBy 1]
5. Boyer EO, Babayan BM, Bevilacqua F, Noisternig M, Warusfel O, Roby-Brami A, Hanneton S, Viaud-Delmon I (2013) From ear to hand: the role of the auditory-motor loop in pointing to an auditory source. Frontiers in Computational Neuroscience, 7:26
    [NBArticle #36382] [CitedBy 1]
6. Cameron BD, Cheng DT, Chua R, van Donkelaar P, Binsted G (2013) Explicit knowledge and real-time action control: anticipating a change does not make us respond more quickly. Experimental Brain Research, 229(3):359-372
    [NBArticle #37846] [CitedBy 3]
7. Cameron BD, López-Moliner J (2015) Target modality affects visually guided online control of reaching. Vision Research, 110:233-243
  [NBArticle #41024] [CitedBy 1]
8. Cluff T, Crevecoeur F, Scott SH (2015) A perspective on multisensory integration and rapid perturbation responses. Vision Research, 110:215-222
  [NBArticle #41025] [CitedBy 1]
9. Cohen YE, Andersen RA (2000) Reaches to sounds encoded in an eye-centered reference frame. Neuron, 27(3):647-652
  [NBArticle #16079] [CitedBy 2]
10. Cressman EK, Cameron BD, Lam MY, Franks IM, Chua R (2010b) Movement duration does not affect automatic online control. Human Movement Science, 29(6):871-881
    [NBArticle #31727] [Cites 1] [CitedBy 1]
11. Cumming G (2012) Understanding the new statistics: effect sizes, confidence intervals, and meta-analysis. Routledge, New York
  [NBArticle #36256] [CitedBy 2]
12. Day BL, Brown P (2001) Evidence for subcortical involvement in the visual control of human reaching. Brain, 124:1832-1840
    [NBArticle #21773] [Cites 1] [CitedBy 6]
13. Day BL, Lyon IN (2000) Voluntary modification of automatic arm movements evoked by motion of a visual target. Experimental Brain Research, 130(2):159-168
      [NBArticle #31414] [Cites 1] [CitedBy 10]
14. Glover SR, Miall RC, Rushworth MFS (2005) Parietal rTMS disrupts the initiation but not the execution of on-line adjustments to a perturbation of object size. Journal of Cognitive Neuroscience, 17(1):124-136
      [NBArticle #13218] [Cites 43] [CitedBy 4] [1 Coordinates]
15. Graziano MSA, Reiss LA, Gross CG (1999) A neuronal representation of the location of nearby sounds. Nature, 397(6718):428-430
  [NBArticle #6113] [Cites 1] [CitedBy 8]
16. Hyde CEA, Wilson PH (2013) Impaired online control in children with developmental coordination disorder reflects developmental immaturity. Developmental Neuropsychology, 38(2):81-97
    [NBArticle #36387] [Cites 1] [CitedBy 2]
17. Izawa J, Shadmehr R (2008) On-line processing of uncertain information in visuomotor control. Journal of Neuroscience, 28(44):11360-11368
    [NBArticle #24390] [CitedBy 1]
18. Johnson H, van Beers RJ, Haggard P (2002) Action and awareness in pointing tasks. Experimental Brain Research, 146(4):451-459
    [NBArticle #12248] [Cites 12] [CitedBy 3]
19. Kerr GK, Fox P, Stein JF (1994) Corrections to unexpected visual changes in the perceived position of the hand during rapid movements. Human Movement Science, 15(5):763-786
    [NBArticle #39296] [Cites 1] [CitedBy 1]
20. Leonard JA, Gritsenko V, Ouckama R, Stapley PJ (2011) Postural adjustments for online corrections of arm movements in standing humans. Journal of Neurophysiology, 105(5):2375-2388
    [NBArticle #32721] [CitedBy 1]
21. Molholm S, Sehatpour P, Mehta AD, Shpaner M, Gomez-Ramirez M, Ortigue S, Dyke JP, Schwartz TH, Foxe JJ (2006) Audio-visual multisensory integration in superior parietal lobule revealed by human intracranial recordings. Journal of Neurophysiology, 96(2):721-729
    [NBArticle #16407] [CitedBy 1]
22. Oostwoud Wijdenes L., Brenner E, Smeets JBJ (2014) Analysis of methods to determine the latency of online movement adjustments. Behavior Research Methods, 46:131-139
  [NBArticle #41027] [CitedBy 2]
23. Oostwoud Wijdenes L., Brenner E, Smeets JBJ (2011) Fast and fine-tuned corrections when the target of a hand movement is displaced. Experimental Brain Research, 214(3):453-462
    [NBArticle #34964] [Cites 1] [CitedBy 1]
24. Oostwoud Wijdenes L., Gomi HR, Brenner E (2015) Vision research special issue on the "on-line visual control of action". Vision Research, 110:143
  [NBArticle #41028] [CitedBy 1]
25. Paulignan Y, MacKenzie C, Marteniuk RG, Jeannerod M (1991a) Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Experimental Brain Research, 83(3):502-512
    [NBArticle #10579] [Cites 19] [CitedBy 173]
26. Paulignan Y, Jeannerod M, MacKenzie C, Marteniuk RG (1991b) Selective perturbation of visual input during prehension movements. 2. The effects of changing object size. Experimental Brain Research, 87(2):407-420
    [NBArticle #12335] [Cites 27] [CitedBy 9]
27. Pettersson L', Lundberg A, Alstermark B, Isa T, Tantisira B (1997) Effect of spinal cord lesions on forelimb target-reaching and on visually guided switching of target-reaching in the cat. Neuroscience Research, 29(3):241-256
    [NBArticle #31419] [Cites 23] [CitedBy 6]
28. Pisella L, Gréa H, Tilikete C, Vighetto A, Desmurget M, Rode G, Boisson D, Rossetti YRC (2000) An 'automatic pilot' for the hand in human posterior parietal cortex: Toward reinterpreting optic ataxia. Nature Neuroscience, 3(7):729-736
    [NBArticle #3596] [Cites 1] [CitedBy 20]
29. Sarlegna FR, Mutha PK (2015) The influence of visual target information on the online control of movements. Vision Research, 110:144-154
  [NBArticle #41026] [CitedBy 1]
30. Song J, Rafal RD, McPeek RM (2011) Deficits in reach target selection during inactivation of the midbrain superior colliculus. Proceedings of the National Academy of Sciences USA, 108(51):E1433-1440
    [NBArticle #35776] [CitedBy 1]
31. Turrell Y, Bard C, Fleury M, Teasdale N, Martin O (1998) Corrective loops involved in fast aiming movements: Effect of task and environment. Experimental Brain Research, 120(1):41-51
    [NBArticle #11049] [Cites 50] [CitedBy 3]
32. Vatakis A, Spence C (2007) Crossmodal binding: evaluating the "unity assumption" using audiovisual speech stimuli. Perception & Psychophysics, 69:744-756
  [NBArticle #19896] [CitedBy 1]
33. Veerman MM, Brenner E, Smeets JBJ (2008) The latency for correcting a movement depends on the visual attribute that defines the target. Experimental Brain Research, 187(2):219-228
    [NBArticle #21677] [Cites 24] [CitedBy 39]
34. Werner W (1993) Neurons in the primate superior colliculus are active before and during arm movements to visual targets. European Journal of Neuroscience, 5(4):335-340
      [NBArticle #13105] [Cites 1] [CitedBy 5]
35. Zhao H, Warren WH (2015) On-line and model-based approaches to the visual control of action. Vision Research, 110:190-202
  [NBArticle #41029] [CitedBy 1]